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The two-dimensional adiabatic transverse normal modes of an inviscid com- 
pressible fluid, having solid body rotation about the axis of its cylindrical 
container, are considered. Relative to the rotating fluid there are two trains 
of harmonic waves, propagating in opposite directions. The first five modes of 
the first-order harmonic wave and the first mode of the harmonic waves of order 
two, five, ten, fifteen and twenty have been considered. The period and amplitude 
of the waves is considerably modified by the rotation. Relative to a fixed co- 
ordinate system the angular velocity of the waves initially propagating in the 
same direction as the rotating fluid, is larger than that of the waves propagating 
in the opposite direction, as might be expected. However, in the case of the first 
mode, relative to the rotating fluid, the waves propagating in the opposite direc- 
tion are the faster. 

1. Introduction 
The dynamics of ratating fluids, because of their connexion with atmospheric 

and geophysical phenomena, have been studied by many authors. An account 
of the effect of rotation on the stability of certain hydrodynamic and magneto- 
hydrodynamic flows has been given by Chandrasekhar (1961). More recently 
Lighthill (1966) presented a survey of the dynamics of rotating fluids. 

In most investigations the effect of fluid compressibility is neglected; and this, 
in general, simplifies the mathematical problem considerably. However, in some 
practical applications, such as vortex generators and combustion chambers, we 
deal with compressible rotating fluids (Swithenbank & Sotter, 1964) and thus it 
would be of interest to investigate the effect of compressibility on the small 
oscillations of such flows. Indeed, the present author (Sozou) investigated the 
symmetrical normal modes of an inviscid perfect fluid, rotating about the axis 
of its cylindrical container, and showed that rotation increases the frequency of 
the normal modes and modifies their amplitude considerably. In  the present note 
we consider the transverse (tangential) waves in a perfect inviscid fluid, having 
solid body rotation about the axis of its cylindrical container. 
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2. Equations of the problem 
We assume that our gas is contained in an infinitely long cylindrical cavitj of 

radius a and rotating with a constant velocity SZ about the axis of symmetry of 
the cavity. 

We use a cylindrical polar co-ordinate system (R, 8, z ) ,  fixed in space, with the 
z-axis along the axis of symmetry of the cavity. We assume that our gas is perfect 
and the entropy is constant throughout the flow, that is, we assume that the 
pressure p and density p of the gas are connected by the relation 

P = APY, 

where A is a constant and y ,  assumed a constant, is the ratio of the specific heats 
of the gas. If we non-dimensionalize our quantities by 

R = ar, C,(R) = C(r)C,(O), P,(R) = p(r)p,(O), Q = wC,(O)ia, v, = C,(O)V, 

where V, is the fluid velocity, C,(R) is the speed of sound and p,(R) is the gas 
density in the steady state, the integral of the momentum equation becomes 

C2 = py-1 = 1 + (y - 1) w2r2/2, 

V = (0, wr, 0). 

(1)  

(2) and V is given by 

We consider a two-dimensional perturbation (a/& = 0) of this state. The case 
of purely radial disturbances ( a / N  = 0 )  has been considered elsewhere (Sozou) 
and here we will be concerned with transverse waves. Thus we let 

ik(o,t-O) 
P1 = P ’ ( 4  6 

and V, = (u, v, 0) = (u’(r), v’(r), 0) eik(wZf-0). 

Here the suffix 1 refers to the perturbation quantities. If we now substitute the 
above relations in the continuity and momentum equations making use of (a) ,  
eliminate p by using the equation of state, and omit primes, to a first-order 
approximation, we obtain the following set of equations: 

ik(w2 - w )  u - 2wv + (d /dr )  (C2pl/p) = 0, 

i k ( 0 2  - o) v + 2wu - ikC2p,/pr = 0. 

(4) 

(5) 

If we eliminate p, between (3) and (5) and between ( 4 )  and (5),  and then 
eliminate v between the resulting pair of equations, we obtain a second-order 
linear differential equation in u, which by using (1) to eliminate C and p becomes 

r2(ao +a,r2 + a2r4) u” +r(b, + b,r2 +b2r4)  u’ + (Co+ C,r2 +Czr4)  u = 0, (6) 

where primes denote differentiation with respect to r and 

a, = 4(w2- w ) ,  

a2 = 4 ( w 2 - 0 ) ( y - 1 ) w 2 { ( y -  1)w2-2(02-w)2} ,  

a, = 4(w2 - w )  {(y - 1) w2- (w2 - w)2}, 
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b, = 12(0,-~),  
b, = ( 3 ~ -  l ) ( ~ , - ~ w ) ( ( y - 1 ) w ~ - 2 ( ~ 2 - - ) ~ } ,  

b, = 4 ( W , - W ) { ( 3 y - 2 ) W 2 - ( 0 2 - W ) 2 } ,  

Cn = 4(w2-~)( l -h2) ,  
c, = 4(@,-0) (1 -h2){(?--  1)W2-2(w2--)2}+4wg(3w2--5w),  

c, = { ( y -  1 ) w 2 - 2 ( w 2 - w ) 2 } ( ( w 2 - w ) ( 1 - ~ ~ ) [ ( y -  1)W2--22(W,-W)2] 

-I- 2wi(w, - 24} ,  

The solution of (6)  is subject to the boundary conditions 
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u finite (for r < 1); u(1) = 0. (7) 
When w is 0, the solution of (6), which is finite at the origin is J;(kw,r),  where 

Jk is the Bessel function of order k. Thus Lo, is given by the zeros of J i .  

3. Method of computation 
We choose y as 1.4 and for a specified w we guess an w2 and, starting from the 

origin, we build up a numerical solution of (6) as follows. 
Over the first five steps from the origin we use the series expansion form of (6), 

choosing the coefficient of the lowest power of r to be 1. Thence we build up the 
solution by using Hamming's step-by-step method (cf. Ralston & Wilf 1961). 
For a particular k and mode the w2 satisfying u( 1) = 0 is obtained by iteration. 
The computations of the method described here were performed on the I.C.L. 
1907 Computer of Sheffield University. 

The coefficient of u" in (6) vanishes when C2 is equal to rZ(w2 - w),, but u and its 
derivatives are always finite. 

4. Results and discussion 
We have taken y as 1.4 and performed computations for several sets of data. 

Results of these computations are shown in figures 1-7. 
Figure 1 shows the'frequency w2 of the &st normal mode as a function of w ,  

when k is 1,2,5,10,15 and 20. Figure 2 shows the frequency w2 of the first-order 
harmonic wave (k = 1) for the first five normal modes. It must be noted that in 
dimensional units the normal mode frequency and the angular velocity of the 
rotating fluid are w2Cn(0)/a and wCn(0)/a respectively. 

From figures 1 and 2, it is easily seen that for waves initially propagating in 
the same direction as the rotating fluid (w and we positive), w2 always increases 
with w. In  the case of the first mode waves, the increase in w2 corresponding to an 
increase in w increases with the order of the harmonic, though w2(w) is larger, 
the lower the order of the harmonic is. Our computations also indicate, as can 
easily be verified by inspection of table 1, that as w increases all the first mode 
frequencies tend from above to w + C( 1). 

When k is 1 (figure 2 )  percentagewise the increase in w,, corresponding to 
an increase in w, is larger the lower the mode is, in agreement with the results 
obtained for the symmetrical normal modes (Sozou). 
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FIGURE 1. First mode frequency w2 as a function of w. The curves, from top to bottom, 
correspond to k equal to 1, 2, 5,  10, 16 and 20 respectively. 
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FIGURE 2.  Frequency w2 of the first-order harmonic wave (k  = 1) as a function of w. 
The curves, from bottom to top, correspond to  the fist five modes consecutively. 
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Harmonic (k) 
1 
2 
5 

10 
15 
20 
1 
2 
5 

10 
15 
20 
1 
2 
1 
2 
1 
2 

0 "8 

1 2.375 
1 2.331 
1 2.265 
1 2.219 
1 2.196 
1 2.182 
2 3.460 
2 3.459 
2 3.442 
2 3.425 
2 3.415 
2 3.406 
3 4-745 
3 4.744 
4 6.1001 
4 6-0999 
6 8.89601 
6 8,89596 

TABLE 1. First mode frequencies 

o + C ( l )  
2.095 
,, 
,, 
,, 
,, 
,, 

3.342 
,, 
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4.673 

6.049 

8.864 

,, 
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7 ,  
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FIGURE 3. First mode amplitude of u (with u(0) = 1) as a function of T when k is 1. The 
curves from top to  bottom correspond to o equal to 4, 2, 0, -2  and -4, respectively. 
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FIUIIRE 4. First mode amplitude of u (with u'(0) = 1) as a function of T when k is 2. 
The curves from top to bottom correspond to w equal to 4, 2, 0, - 2 and - 4, respectively. 
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FIGURE 5. First mode amplitude of u (with u"(0) = 41) as a function of r when k is 5. 
The curves A ,  B, C, D and the broken curve correspond to the cases when o is 1, 2, 
- 1, - 2 and 0, respectively. 
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FIGURE 6. Second mode amplitude of u (with u(0)  = 1) as a function of r when k is 1. 
The curves A ,  B, C, D and the broken curve correspond to the cases when o is 2, 4, - 2, 
- 4, and 0, respectively. 
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FIGURE 7. Third mode amplitude of u (with u(0) = 1) as a function of r when k is 1. 
The curves A,  B, C, D and the broken curve correspond to the cases when w is 2, 4, - 2, 
- 4 and 0, respectively. 
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For the data considered here, the effect of rotation on the frequency of waves, 
initially propagating opposite to the direction of rotation (w negative), is the 
following. 

The frequency of the first-order waves (figure 2) is reduced for slow rotation 
and reaches a minimum. (For the first mode the minimum occurs when w is 
about - 0.25 and for the remaining 'modes shown in figure 2 the minimum occurs 
when w is about - 1.) Thence large angular fluid velocities, speed up, not only 
the waves propagating in the direction of fluid rotation, but all the first-order 
waves propagating in the opposite direction, as well. 

From the first mode waves (figure 1) only the first-order one is eventually 
speeded up by rotation (this wave tends to rotate as fast as the fluid; when w 
is -3 ,  - 4  and - 6  the corresponding w2 is 3.34, 4.22 and 6.12, respectively). 
The remaining waves are slowed down and for sufficiently large w and k > 2 
all the first mode waves are forced to rotate in the same sense as the fluid. 

For all first mode waves, Iw - w21 is smaller when w is positive, that is, relative 
to the rotating fluid all the first mode waves, which initially propagate in the same 
sense as the rotating fluid, are slower than the corresponding waves propagating 
in the opposite direction. For the other modes this is true only for a range of 
values of w .  

The effect of rotation on the amplitude of u is shown in figures 3-7. If the 
magnitude of the disturbance near the origin is specified (for the k-wave we 
have set uk--1(0) = (k- 1) !), the amplitude of u, corresponding to a negative w, 
is depressed. The amplitude of u, corresponding to a positive w ,  increases with w ,  
until it reaches a maximum, and thence it decreases when w increases, though, 
when k is 1 or 2 this amplitude seems to increase continuously with w. 

Positive w shifts the zeros of u, towards the origin whereas negative w a t  
first shifts these zeros away from the origin, but as it increases it eventually 
shifts them towards the origin. 
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